Generate random samples from a Gamma distribution
sdf_rgamma
Description
Generator method for creating a single-column Spark dataframes comprised of i.i.d. samples from a Gamma distribution.
Usage
sdf_rgamma(
sc,
n,
shape,
rate = 1,
num_partitions = NULL,
seed = NULL,
output_col = "x"
)Arguments
| Arguments | Description |
|---|---|
| sc | A Spark connection. |
| n | Sample Size (default: 1000). |
| shape | Shape parameter (greater than 0) for the Gamma distribution. |
| rate | Rate parameter (greater than 0) for the Gamma distribution (scale is 1/rate). |
| num_partitions | Number of partitions in the resulting Spark dataframe (default: default parallelism of the Spark cluster). |
| seed | Random seed (default: a random long integer). |
| output_col | Name of the output column containing sample values (default: “x”). |
See Also
Other Spark statistical routines: sdf_rbeta(), sdf_rbinom(), sdf_rcauchy(), sdf_rchisq(), sdf_rexp(), sdf_rgeom(), sdf_rhyper(), sdf_rlnorm(), sdf_rnorm(), sdf_rpois(), sdf_rt(), sdf_runif(), sdf_rweibull()