Tidying methods for Spark ML linear models
ml_glm_tidiers
Description
These methods summarize the results of Spark ML models into tidy forms.
Usage
## S3 method for class 'ml_model_generalized_linear_regression'
tidy(x, exponentiate = FALSE, ...)
## S3 method for class 'ml_model_linear_regression'
tidy(x, ...)
## S3 method for class 'ml_model_generalized_linear_regression'
augment(
x,
newdata = NULL,
type.residuals = c("working", "deviance", "pearson", "response"),
...
)
## S3 method for class '`_ml_model_linear_regression`'
augment(
x,
new_data = NULL,
type.residuals = c("working", "deviance", "pearson", "response"),
...
)
## S3 method for class 'ml_model_linear_regression'
augment(
x,
newdata = NULL,
type.residuals = c("working", "deviance", "pearson", "response"),
...
)
## S3 method for class 'ml_model_generalized_linear_regression'
glance(x, ...)
## S3 method for class 'ml_model_linear_regression'
glance(x, ...)Arguments
| Arguments | Description |
|---|---|
| x | a Spark ML model. |
| exponentiate | For GLM, whether to exponentiate the coefficient estimates (typical for logistic regression.) |
| … | extra arguments (not used.) |
| newdata | a tbl_spark of new data to use for prediction. |
| type.residuals | type of residuals, defaults to "working". Must be set to "working" when newdata is supplied. |
| new_data | a tbl_spark of new data to use for prediction. |
Details
The residuals attached by augment are of type “working” by default, which is different from the default of “deviance” for residuals() or sdf_residuals().