Spark ML - Evaluators
ml_evaluator
Description
A set of functions to calculate performance metrics for prediction models. Also see the Spark ML Documentation https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.ml.evaluation.package
Usage
ml_binary_classification_evaluator(
x,
label_col = "label",
raw_prediction_col = "rawPrediction",
metric_name = "areaUnderROC",
uid = random_string("binary_classification_evaluator_"),
...
)
ml_binary_classification_eval(
x,
label_col = "label",
prediction_col = "prediction",
metric_name = "areaUnderROC"
)
ml_multiclass_classification_evaluator(
x,
label_col = "label",
prediction_col = "prediction",
metric_name = "f1",
uid = random_string("multiclass_classification_evaluator_"),
...
)
ml_classification_eval(
x,
label_col = "label",
prediction_col = "prediction",
metric_name = "f1"
)
ml_regression_evaluator(
x,
label_col = "label",
prediction_col = "prediction",
metric_name = "rmse",
uid = random_string("regression_evaluator_"),
...
)Arguments
| Arguments | Description |
|---|---|
| x | A spark_connection object or a tbl_spark containing label and prediction columns. The latter should be the output of sdf_predict. |
| label_col | Name of column string specifying which column contains the true labels or values. |
| raw_prediction_col | Raw prediction (a.k.a. confidence) column name. |
| metric_name | The performance metric. See details. |
| uid | A character string used to uniquely identify the ML estimator. |
| … | Optional arguments; currently unused. |
| prediction_col | Name of the column that contains the predicted label or value NOT the scored probability. Column should be of type Double. |
Details
The following metrics are supported
• Binary Classification: areaUnderROC (default) or areaUnderPR (not available in Spark 2.X.)
• Multiclass Classification: f1 (default), precision, recall, weightedPrecision, weightedRecall or accuracy; for Spark 2.X: f1 (default), weightedPrecision, weightedRecall or accuracy.
• Regression: rmse (root mean squared error, default), mse (mean squared error), r2, or mae (mean absolute error.)
ml_binary_classification_eval() is an alias for ml_binary_classification_evaluator() for backwards compatibility.
ml_classification_eval() is an alias for ml_multiclass_classification_evaluator() for backwards compatibility.
Value
The calculated performance metric
Examples
sc <- spark_connect(master = "local")
mtcars_tbl <- sdf_copy_to(sc, mtcars, name = "mtcars_tbl", overwrite = TRUE)
partitions <- mtcars_tbl %>%
sdf_random_split(training = 0.7, test = 0.3, seed = 1111)
mtcars_training <- partitions$training
mtcars_test <- partitions$test
# for multiclass classification
rf_model <- mtcars_training %>%
ml_random_forest(cyl ~ ., type = "classification")
pred <- ml_predict(rf_model, mtcars_test)
ml_multiclass_classification_evaluator(pred)
# for regression
rf_model <- mtcars_training %>%
ml_random_forest(cyl ~ ., type = "regression")
pred <- ml_predict(rf_model, mtcars_test)
ml_regression_evaluator(pred, label_col = "cyl")
# for binary classification
rf_model <- mtcars_training %>%
ml_random_forest(am ~ gear + carb, type = "classification")
pred <- ml_predict(rf_model, mtcars_test)
ml_binary_classification_evaluator(pred)