Feature Transformation - MinMaxScaler (Estimator)
ft_min_max_scaler
Description
Rescale each feature individually to a common range [min, max] linearly using column summary statistics, which is also known as min-max normalization or Rescaling
Usage
ft_min_max_scaler(
x,
input_col = NULL,
output_col = NULL,
min = 0,
max = 1,
uid = random_string("min_max_scaler_"),
...
)Arguments
| Arguments | Description |
|---|---|
| x | A spark_connection, ml_pipeline, or a tbl_spark. |
| input_col | The name of the input column. |
| output_col | The name of the output column. |
| min | Lower bound after transformation, shared by all features Default: 0.0 |
| max | Upper bound after transformation, shared by all features Default: 1.0 |
| uid | A character string used to uniquely identify the feature transformer. |
| … | Optional arguments; currently unused. |
Details
In the case where x is a tbl_spark, the estimator fits against x to obtain a transformer, returning a tbl_spark.
Value
The object returned depends on the class of x. If it is a spark_connection, the function returns a ml_estimator or a ml_estimator object. If it is a ml_pipeline, it will return a pipeline with the transformer or estimator appended to it. If a tbl_spark, it will return a tbl_spark with the transformation applied to it.
See Also
Other feature transformers: ft_binarizer(), ft_bucketizer(), ft_chisq_selector(), ft_count_vectorizer(), ft_dct(), ft_elementwise_product(), ft_feature_hasher(), ft_hashing_tf(), ft_idf(), ft_imputer(), ft_index_to_string(), ft_interaction(), ft_lsh, ft_max_abs_scaler(), ft_ngram(), ft_normalizer(), ft_one_hot_encoder(), ft_one_hot_encoder_estimator(), ft_pca(), ft_polynomial_expansion(), ft_quantile_discretizer(), ft_r_formula(), ft_regex_tokenizer(), ft_robust_scaler(), ft_sql_transformer(), ft_standard_scaler(), ft_stop_words_remover(), ft_string_indexer(), ft_tokenizer(), ft_vector_assembler(), ft_vector_indexer(), ft_vector_slicer(), ft_word2vec()
Examples
sc <- spark_connect(master = "local")
iris_tbl <- sdf_copy_to(sc, iris, name = "iris_tbl", overwrite = TRUE)
features <- c("Sepal_Length", "Sepal_Width", "Petal_Length", "Petal_Width")
iris_tbl %>%
ft_vector_assembler(
input_col = features,
output_col = "features_temp"
) %>%
ft_min_max_scaler(
input_col = "features_temp",
output_col = "features"
)