Feature Transformation - Binarizer (Transformer)
ft_binarizer
Description
Apply thresholding to a column, such that values less than or equal to the threshold are assigned the value 0.0, and values greater than the threshold are assigned the value 1.0. Column output is numeric for compatibility with other modeling functions.
Usage
ft_binarizer(
x,
input_col,
output_col,
threshold = 0,
uid = random_string("binarizer_"),
...
)Arguments
| Arguments | Description |
|---|---|
| x | A spark_connection, ml_pipeline, or a tbl_spark. |
| input_col | The name of the input column. |
| output_col | The name of the output column. |
| threshold | Threshold used to binarize continuous features. |
| uid | A character string used to uniquely identify the feature transformer. |
| … | Optional arguments; currently unused. |
Value
The object returned depends on the class of x. If it is a spark_connection, the function returns a ml_estimator or a ml_estimator object. If it is a ml_pipeline, it will return a pipeline with the transformer or estimator appended to it. If a tbl_spark, it will return a tbl_spark with the transformation applied to it.
See Also
Other feature transformers: ft_bucketizer(), ft_chisq_selector(), ft_count_vectorizer(), ft_dct(), ft_elementwise_product(), ft_feature_hasher(), ft_hashing_tf(), ft_idf(), ft_imputer(), ft_index_to_string(), ft_interaction(), ft_lsh, ft_max_abs_scaler(), ft_min_max_scaler(), ft_ngram(), ft_normalizer(), ft_one_hot_encoder(), ft_one_hot_encoder_estimator(), ft_pca(), ft_polynomial_expansion(), ft_quantile_discretizer(), ft_r_formula(), ft_regex_tokenizer(), ft_robust_scaler(), ft_sql_transformer(), ft_standard_scaler(), ft_stop_words_remover(), ft_string_indexer(), ft_tokenizer(), ft_vector_assembler(), ft_vector_indexer(), ft_vector_slicer(), ft_word2vec()
Examples
library(dplyr)
sc <- spark_connect(master = "local")
iris_tbl <- sdf_copy_to(sc, iris, name = "iris_tbl", overwrite = TRUE)
iris_tbl %>%
ft_binarizer(
input_col = "Sepal_Length",
output_col = "Sepal_Length_bin",
threshold = 5
) %>%
select(Sepal_Length, Sepal_Length_bin, Species)